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Abstract

In this paper, we study the discrete Voronoi game on a rectangular
grid G(m,n) where two players place their facilities (k facilities each)
in the grid in one round. The area of the grid is shared among the
two players (White and Black, denoted by W and B, respectively)
based on the nearest neighbor rule with the Manhattan metric. We
show that in one dimensional grid, G(1, n), W as the first player, has
a winning strategy which will guarantee the winning margin of one for
him if 2k does not divide n. Then, we study two dimensional grid,
G(m,n), where m > 1. In this case B is able to defeat W in some
cases. Therefore we calculate the properties of a grid in which W wins
the game when m is an odd number. Furthermore, we propose a lower
bound for the grid size where W wins the game with winning margin of
at least m. When m is even, W is not able to win the game assuming
the optimal play by B (the best case for W is to not lose).

1 Introduction

Facility location is an optimization problem, dealing with placing a set of
facilities which must serve a set of customers based on an optimality mea-
sure. Adding the competitive market players to this context and combining
it with the arguments of game theory will lead to competitive facility loca-
tion problem. This problem has been extensively studied in different fields
such as computational geometry, mathematics, industrial engineering and
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operation research. Extensive overviews of this problem and its models can
be found in the surveys by Friesz et al. [8] and Eiselt and Laporte [7]. The
Voronoi game is a simple geometric model for the competitive facility loca-
tion problem. Two competing market players in Voronoi game, place two
disjoint set of facilities in the bounded gaming workspace in a given number
of rounds. The Voronoi diagram of all sites is calculated, and at the end,
the player whose total Voronoi region occupy the most area, is considered
the winner.
From the viewpoint of the number of rounds, there are two types of Voronoi
game. In the one round game, the first player (White denoted by W ) places
a set of k facilities. After W ’s play, the second player (Black denoted by B)
places his set of k facilities in the game region. In the other variation which
is called k-round game, the two players place one facility each alternately
for k rounds in the game region. Voronoi game has been widely studied
on the continuous space domain. One dimensional k -round Voronoi game
where the game region is a line segment or a circle, was studied by Ahn et
al. [1]. By following their proposed strategy, the second player (B) always
wins the game by a winning margin of ε > 0. Their defined k -round game is
different from the one round game on the continues line segment where W
can achieve a win by placing his facilities at the odd integer points. Also,
like the k -round case, W can decrease the loss margin as much as he wishes.
Fekete and Meijer [2] proposed a model for two dimensional one round game
played on a rectangular continuous demand region. The solution for some of
the open problems in the one round Voronoi game in two dimensional grid
can be found in [2]. In particular, they proposed a characterization of the
game with the assumption of optimal play. They also studied the winning
conditions in terms of the number of facilities and the aspect ratio of the
game board.
The discrete Voronoi game was introduced by Teramoto et al. [3]. In this
game, two players place n facilities each, in a graph which contains at least
2n nodes. They showed that in a complete k − ary tree, where the tree is
large enough considering n and k, the first player has a winning strategy.
The Voronoi game on graphs and particularly on trees were later studied
by Kiyomi et al. [4]. They proposed a model for the different cases of the
game on a path. They showed that the game on a path containing n vertices
where the game play is continued for t < n

2 rounds will finish in an equal
state for two players if either n is even or t is not one. When n is odd
and t = 1, the first player wins the game. Banik et al. [5] studied another
variation of the discrete Voronoi game which is played on a simple poly-
gon. They proposed the complexity results for the both players when the
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number of facilities for each player is limited to one. They also studied the
problem of one round discrete game on a line segment [6]. In this problem,
the players are competing for owning a set of n users by placing a set of m
points each and disjoint from each other, on the line segment in one round.
They proved that if the sorted order of the n points on the line segment
is known, the optimal strategy for the second player can be computed in
O(n) time. They also showed that the optimal strategy of the first player
for any m ≥ 2 can be computed in O(nm−λm) time where 0 < λm < 1 is a
constant depending to m. This problem on the multi round version and also
on the multi dimensional case is still open. The one round discrete Voronoi
game in R2 in presence of existing facilities were investigated by Banik et
al. [9]. They studied a simplified variant of the discrete Voronoi game in
the plane. The game consists of two players and a finite set of users in the
plane. Moreover, the two players have already placed a set of facilities F
and S, respectively, in the plane. The game is started by the first player by
placing a new facility followed by the second player, placing another facility.
This is very similar to the final round of a k-round discrete Voronoi game
when both players had placed a set containing k− 1 facilities each, already.
They proposed polynomial time algorithms for finding the optimal strate-
gies for both of the players when the location of the points in F and S were
selected arbitrarily. They showed that the optimal strategy for the second
player and the first player, given any placement for the first player, can be
computed in O(n2) and O(n8) time, respectively.
In this paper we study the one round discrete Voronoi game on a grid
G(m,n). To achieve a better model, the facilities are considered to have
area. The problem is studied in one dimensional grid first and a winning
strategy that guarantees the winning margin of one if 2k - n is proposed for
W . Further, the optimality of W ’s strategy is shown as well. Two dimen-
sional case where the width of the grid, m, is an odd number is studied as
well, and the condition for the W ’s win is computed. These computations
provide conditions in a way that W wins the game by a margin of m at least
if he follows the proposed strategy. It is clear that in the grid with even m,
the symmetry play by B finishes the game in a tie in most cases. However,
proposing a winning strategy in even m case for B, seems much harder.
The rest of this paper is organized as follows. In the next section, the game
definitions and formulation are discussed. Section 3 covers one dimensional
Voronoi game on the grid. The game in two dimensional grid board is dis-
cussed in section 4. Finally, the last section summarizes some open issues
which are introduced by this problem.
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2 Voronoi Game on Grid

We start the discussion by the formulation of the game. The grid Voronoi
game is denoted by GV Gr(G, k) in which, k is the number of facilities for
either of the players and r is the number of play rounds. In the rest of
this paper, G(m,n) is considered the game play board. G is a rectangular
grid with the length of n and the width of m and consists of m × n unit
squares called cells. Also, all of the distances in the game are measured using
the Manhattan metric. These will change the calculations for the Voronoi
diagram. In the one round game variation (r = 1) which is studied in this
paper, each of the players (White denoted by W as the first player and Black
denoted by B as the second player) chooses a set of k facilities disjoint from
each other. Players are not able to choose a cell which is already occupied
by either of the players. One or both of the players will own the whole area
or a part of a cell respectively based on the nearest neighbor rule. Hence the
area of a cell which has the same distance from some cells occupied by W or
B, is shared among them. Furthermore, By placing a facility in a cell, the
corresponding player will own all the area of that specific cell. The players
compete to own the maximum part of the m× n cells of the game region in
one round and the player owning the larger part of the region is the winner
of the game.

3 One Dimensional Grid Voronoi Game

W has a winning strategy in the one-round Voronoi game on a continues line
segment [1]. This player wins the game by placing his facilities at the odd
integer points along the line segment. In this settings, B can decrease the
loss margin as much as he wishes. In the discrete case a winning strategy
for W and a defense strategy for B were proposed [6].

In this section, we consider G(1, n) as a one dimensional grid with the
length of n (and the width of m = 1). Without loss of generality sup-
pose that the orientation of the grid is horizontal as illustrated in Figure 1.
Therefore, we have the following definitions:

Definition 1. The distance between the cells of two consecutive facilities of
W is called an interval.

Definition 2. The horizontal distance between the left side of the game
region and the leftmost occupied cell of W is called left half interval and is
denoted by LHI. Likewise, the half interval between the right side of the
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Figure 1: 1-D grid Voronoi game GV Gr=1(G(m = 1, n = 16), k = 3)

game region and the rightmost occupied cell of W is called right half interval
and is denoted by RHI.

Notation 1. The length of every full/half interval I is denoted by |I|.

By considering these definitions, we show that selecting the position of
facilities according to ⌊

(2i− 1)× n
2k

⌋
; i = 1, ..., k (1)

in GV G1(G(1, n), k) is a winning strategy for W . To prove this, we need the
following propositions and definitions. Note that, they are true if W uses
this placing strategy.

Proposition 1. The maximum length of a full interval, in case of existence,
is
⌊
n
k

⌋
.

Proof. For any optional 1 ≤ t ≤ k−1, the Manhattan distance between two
consecutive occupied cells of W (tth and (t+ 1)th) is:⌊

(2t+ 1)× n
2k

⌋
−
⌊

(2t− 1)× n
2k

⌋
− 1

≤ (2t+ 1)× n
2k

−
(

(2t− 1)× n
2k

− 1

)
− 1 =

n

k
.

It is obvious that the distance between any two optional cells is an integer
number. Hence the maximum distance, in case of existence, is

⌊
n
k

⌋
.
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In the following, an interval with the maximum length is denoted by
IMAX.

Proposition 2. The minimum length of a full interval, in case of existence,
is
⌊
n
k

⌋
− 1.

Proof. With the same reasoning as Proposition 1, the following equations
are valid when we subtract the positions of two consecutive occupied cells:⌊

(2t+ 1)× n
2k

⌋
−
⌊

(2t− 1)× n
2k

⌋
− 1

≥
⌊

(2t+ 1)× n
2k

− (2t− 1)× n
2k

⌋
− 1 =

⌊n
k

⌋
− 1.

As a result, the minimum interval length, in case of existence, is
⌊
n
k

⌋
−

1.

Likewise, IMIN indicates a full interval with the minimum length.

Proposition 3. For any optional n the inequality |RHI| ≤ |LHI| holds. As
a result |RHI|+ |LHI| ≤

⌊
n
k

⌋
.

Proof. According to Eq. (1), counting the grid cells horizontally, is started
from zero. Hence, the length of LHI is:

|LHI| =
⌊ n

2k

⌋
. (2)

To measure the length of LHI, let i = k in Eq. (1). The horizontal
position of kth occupied cell is:

⌊
n− n

2k

⌋
. This will result the following

calculations:

n−
⌊
n− n

2k

⌋
− 1 = n− n−

⌊
− n

2k

⌋
− 1 = −

⌊
− n

2k

⌋
− 1.

Then,

− n

2k
+ 1 ≥ −

⌊ n
2k

⌋
⇒
⌊
− n

2k

⌋
+ 1 ≥ −

⌊ n
2k

⌋

⇒ |RHI| = −
⌊
− n

2k

⌋
− 1 ≤

⌊ n
2k

⌋
= |LHI| .

Furthermore, according to |RHI| ≤ |LHI| =
⌊
n
2k

⌋
, the following holds:

|LHI|+ |RHI| ≤ 2×
⌊ n

2k

⌋
≤
⌊n
k

⌋
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Proposition 4. B owns at least |LHI| of the game region by placing a facil-
ity in an IMIN interval. This means that selecting LHI or RHI is dominated
by the selection of an empty IMIN interval.

Proof. B gains ⌊
n
k

⌋
− 2

2
+ 1 =

⌊
n
k

⌋
2

(3)

by placing a facility in an IMIN interval. This will lead to the correctness
of the proposition:⌊n

k

⌋
− 1 ≤ 2×

⌊ n
2k

⌋
≤
⌊n
k

⌋
⇒
⌊ n

2k

⌋
≤ 1

2

⌊n
k

⌋
.

Proposition 5. Placing two facilities in one IMIN interval is not an effi-
cient placing strategy for B.

Proof. According to Proposition 2, the length of any IMIN interval is
⌊
n
k

⌋
−1.

B will own at most the entire length of the interval by placing two facilities
in any interval. However, this selection is dominated by placing a facility in
an IMIN interval and placing another one in LHI, because:⌊n

k

⌋
− 1 ≤

⌊ n
2k

⌋
+

1

2

⌊n
k

⌋
≤
⌊n
k

⌋
.

Furthermore, the result of placing two facilities in two empty IMIN in-
tervals is

⌊
n
k

⌋
.

Proposition 6. Placing two facilities in one IMAX interval is not efficient
for B.

Proof. According to Proposition 1, the length of any IMAX interval is
⌊
n
k

⌋
.

B gains this amount by placing two facilities in two IMIN intervals if they
exist. Placing a facility in an IMIN and the other one in an IMAX interval
guarantee

⌊
n
k

⌋
+ 1

2 Voronoi region for B. Furthermore, playing a facility
in IMAX and the other one in LHI is at least as efficient as placing two
facilities in IMAX, because:

1

2

⌊n
k

⌋
+
⌊ n

2k

⌋
+

1

2
≥
⌊n
k

⌋
.
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Theorem 1. W wins GV G1(G, k) in G(1, n) by selecting the position of his
facilities according to Eq. (1) where 2k - n. The game ends in a tie when
2k | n.

Proof. Assume that t is the number of IMIN intervals when W places his
facilities according to Eq. (1). The number of IMAX intervals will be
k − 1− t. Considering Propositions 1 to 6, B is forced to place a facility in
each interval and finally places a facility in LHI. Hence, the Voronoi region
of B is

t×
(

1

2

⌊n
k

⌋)
+ (k − 1− t)

(
1

2

⌊n
k

⌋
+

1

2

)
+
⌊ n

2k

⌋
.

This method of placement of facilities is called simple strategy from now
on.
The Voronoi region of W has two cases:

• 2k | n : Then, |RHI| < |LHI| and as a result,

t×
(

1

2

⌊n
k

⌋
− 1

)
+ (k − 1− t)

(
1

2

⌊n
k

⌋
− 1

2

)
+
⌊ n

2k

⌋
− 1 + k.

• 2k - n: This means that |RHI| = |LHI| and W wins

t×
(

1

2

⌊n
k

⌋
− 1

)
+ (k − 1− t)

(
1

2

⌊n
k

⌋
− 1

2

)
+
⌊ n

2k

⌋
+ k.

Subtracting the Voronoi region amount of W and B in the first case will
finish the game in tie. W wins the game with the winning margin of one in
the later.

Theorem 1 fully covers GV G1(G, 1) on G(1, n). This theorem confirms
the initial insight about the problem. Regular segmentation of G equally as
much as possible, is a winning strategy for W .

3.1 Proof of Optimality

In this section we prove that the placing strategy based on Eq. (1) is an
optimal placement strategy for W . It is clear that different arrangements of
IMIN and IMAX intervals between LHI and RHI are also optimal placement
strategies if placement based on Eq. (1) is optimal. When we have t objects
of one kind (IMAX intervals) and k − 1 − t objects of another kind (IMIN
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intervals), then the number of ways of arranging them in a row (number of
optimal placement strategies) is equal to:

(k − 1)!

t!(k − 1− t)!
.

Since different arrangements of IMIN and IMAX intervals are equivalent,
we use Eq. (1) in the following.

Theorem 2. Placing facilities according to Eq. (1) is an optimal placement
strategy for W .

Proof. Suppose that W uses an arbitrary placing strategy other than Eq.
(1) (or any of its other variations) in G(1, n). Also, we denote the length
of the created half/full intervals by L0, L1, ..., Lk from the left to the right
side of the grid respectively assuming the grid is horizontal. It is clear that
by placing a facility in each one of the W ’s intervals, the amount of Voronoi
region of B is

MAX(L0, Lk) +
L1 + 1

2
+
L2 + 1

2
+ ...+

Lk−1 + 1

2
.

Simplifying this equation leads to the following:

MAX(L0, Lk) +
1

2
(L1 + L2 + ...+ Lk−1) +

k − 1

2
(4)

Similarly, the Voronoi region of W is equal to

MIN(L0, Lk) +
1

2
(L1 + L2 + ...+ Lk−1) +

k + 1

2
(5)

the result of subtracting Eq. (4) from Eq. (5) is:

MIN(L0, Lk)−MAX(L0, Lk) + 1. (6)

If MIN(L0, Lk) 6= MAX(L0, Lk) holds, B does not lose the game (because
MIN(L0, Lk) ≤ MAX(L0, Lk)). As a result, since |LHI| = |RHI| must holds,
the loss margin of B is not more than one, if he plays optimally. Also,
note in previous equations that the length of every interval is at least one.
Otherwise, B always can achieve equality with symmetry play (since the
number of intervals is less than k+ 1). Now, suppose that the length of one
of the intervals I is bigger than |IMAX| (|I| = |IMAX|+L). We investigate
this problem in two cases:
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• L ≥ 2: First, suppose that L = 2. B gains

|IMAX|+ 3

2

by placing one facility in this interval. The remaining length of this
interval for W is

|IMAX|+ 1

2
.

Now, suppose that L0 = Lk <
⌊
n
2k

⌋
. B gains at least equality by

placing two facilities in I. If L0 = Lk >
⌊
n
2k

⌋
, placing a facility in an

IMIN interval (there exist at least one if k > 2) is not efficient, because

|LHI| = |RHI| ≥
⌊ n

2k

⌋
>

1

2

⌊n
k

⌋
.

Hence,

|LHI| = |RHI| =
⌊ n

2k

⌋
.

Since
⌊
n
2k

⌋
< |IMAX|+1

2 , placing two facilities in I when |I| ≥ |IMAX|+2
guarantees equality for B. The same reasonings are valid for L > 2 as
well.

• L = 1: At first, assume that if W uses Eq. (1), the number of
IMAX intervals is just one. Similar calculations enforces that |LHI| =
|RHI| =

⌊
n
2k

⌋
. Therefore, if there exists an interval I with the length

of |IMAX|+ 1, there should exist at least one interval with the length
smaller than |IMIN| (say |IMIN| − 1). If this is the case, B again
achieve at least equality by placing two facilities in I. If the num-
ber of IMAX intervals is more than one, existence of an interval with
the length smaller than |IMIN| is not guaranteed (W can create I
with length |IMAX| + 1 by converting one of the IMAX intervals to

IMIN). B gains |IMAX|+1
2 by placing a facility in I and |IMAX|

2 re-

mains for W . Since |IMAX|
2 ≥

⌊
n
2k

⌋
, B ends the game in an equal state

when |IMAX|
2 >

⌊
n
2k

⌋
and W wins the game with margin of one when

|IMAX|
2 =

⌊
n
2k

⌋
in this case (GV G1(G(1, 19), 4) as an example).

A similar proof is valid when there exist an interval I so that |I| ≤
|IMIN| − 1.
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Therefore, placing facilities based on Eq. (1) is an optimal placing strat-
egy for W .
By proving theorem 2, we covered one round Voronoi game on grid com-
pletely. As a result, we proposed an optimal strategy for W in one round one
dimensional Voronoi game having winning margin of at least one, if 2k - n.
We also proved that W at least gain equality if 2k | n. In the next section,
we will cover two dimensional grid Voronoi game.

4 Two Dimensional Grid Voronoi Game

The game play scenario in two dimensional game is different. Both of the
players can freely choose the location of their facilities in two directions and
as a result the winning strategies will change. However, two dimensional
grid Voronoi game is fundamentally different from two dimensional Voronoi
game on the continuous region. Fekete and Meijer [2] proposed winning
strategies and conditions for the one round game played on the continuous
two dimensional region. By means of their proposed strategy and calculat-
ing the aspect ratio of the game region, one can predict the result of the
game. Playing based on their strategy, will result in the winning margin
of arbitrary small number ε > 0. The winner of the game is decided by
considering the aspect ratio of the game region and the number of facilities
that each user can play.
This kind of reasonings is not valid in the grid. Actually, as the facilities
in the grid Voronoi game have area, proposing winning strategy is much
harder. The same limitations is the cause of non-symmetry in many grids.
Therefore, by only considering the aspect ratio and the number of facilities
for each user one can not determine the result of the game. Furthermore,
in grid Voronoi game, more precise winning margin can be calculated and
unlike the continuous case, none of the players can decrease the loss margin
arbitrarily. Hence, we will divide the problem into two sub problems: the
grid with odd width (m is odd) and the grids with even width (m is even). In
the following, the winning condition for W will be proposed. Note however
that, these conditions does not mean that B wins the game in the rest of
cases (Unlike continuous region). For the grid with the even width, propos-
ing a winning strategy for either of the players seems much more difficult.
It is not hard to show that B does not lose the game in the grid with even
width (symmetry play in many cases). Yet proposing a winning strategy for
B when m is even is still open.
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(a) Not in Rmid (b) In Rmid

Figure 2: B places a facility in a neighboring cell of the W ’s leftmost occu-
pied cell in the leftmost full interval (odd length).

In this section suppose that m ≥ 3 is an odd number. We denote the(
m+1
2

)th
row of the grid (assuming the grid is horizontal) by Rmid and we call

it the middle row. Furthermore, like one dimensional case, the horizontal
distance between two consecutive facilities of W (which is a rectangle now),
is called an interval (similar definitions for the half intervals also holds). In
this section, we assume that W will place his facilities according to Eq. (1)
horizontally and in Rmid vertically. Therefore, the position of every facility
of W is selected based on the following equation:(

m+ 1

2
,

⌊
(2i− 1)× n

2k

⌋)
; i = 1, ..., k. (7)

Lemma 1. Let n1 = 5
3m×k−

7
3k+1 and W places his facilities in G(m,n)

according to Eq. (7). Also, suppose that B has placed a facility in Rmid, in
a full interval, (Figure 2(b), Figure 3(b) and Figure 4). For every n ≥ n1,
this place is the most efficient place for the B’s facility in that interval.

Proof. To prove this lemma, we investigate different possible cases. For
the first case, assume that B places a facility in a neighboring cell of the
W ’s leftmost occupied cell in the leftmost full interval with the odd length
(Figure 2).

In this figures we denote the full interval by I and the half interval by
HI. Suppose that |I| is an odd number. Then the Voronoi region of B’s
facility in the left side of Figure 2 is:(

m− 1

2

)
×
(
|HI|+ 1

2
+
|I|+ 2

2

)
+

(
m+ 1

2

)
×
(
|I| − 1

4
+

1

3

)
. (8)

Simplifying Eq. (8) results the following:(
3m− 1

8

)
× |I|+ (m− 1)× |HI|

4
+

19

24
m− 17

24
. (9)

13



(a) Not in Rmid (b) In Rmid

Figure 3: B place a facility in a neighboring cell of the W ’s leftmost occupied
cell in the leftmost full interval (even length).

The Voronoi region for B’s facility in the right side of Figure 2 is:

m×
(
|I|+ 1

2

)
. (10)

Subtracting these two equations, considering |HI| = |I|−1
2 or |HI| = |I|+1

2
will result Eq. (11)

n ≥ 2
3m× k −

4
3k ; I = IMIN , |HI| = |I|−1

2

n ≥ 5
3m× k −

7
3k ; I = IMIN , |HI| = |I|+1

2

n ≥ 2
3m× k −

7
3k ; I = IMAX , |HI| = |I|−1

2

n ≥ 5
3m× k −

10
3 k ; I = IMAX , |HI| = |I|+1

2

(11)

Similar reasonings for the case demonstrated in Figure 3 in which |I| is
even leads to: 

n ≥ m× k − 2k ; I = IMIN , |HI| = |I|
2

n ≥ m× k − 3k ; I = IMAX , |HI| = |I|
2

(12)

Taking maximum over all the possible cases in Eq. (11) and Eq. (12),
will result the proof of the lemma. Note that in the maximum case which
the maximum value is

n1 =
5

3
m× k − 7

3
k + 1 (13)

the corresponding interval, I, is an IMIN interval and |I| is odd.
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Figure 4: Placing B’s facility beside W ’s facility when closest neighboring
interval is a full interval

Figure 5: The whole Voronoi region of a facility is inside an interval

A similar proof for the case where B’s facility is placed in a full interval
and its closest neighboring interval is also a full interval (As illustrated in
Figure 4) is similar and leads to the same n1 as a result.

In the following lemma, another case of inefficiency of not selecting Rmid
for B’s play is discussed.

Lemma 2. Assume that B, places a facility in an interval I in a way that
the whole Voronoi region of that facility remains inside the bounds of I.
Also suppose that the vertical distance of this facility to Rmid is a > 0.
Transferring this facility vertically to Rmid will increase the Voronoi region
and the amount of increment is a2.

Proof. Suppose that B, places a facility in an interval I in a way that the
whole Voronoi region of that facility remains inside the bounds of I (Figure
5). To measure the Voronoi region of this facility, we split the Voronoi region
into three parts vertically:
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• The rows below the facility and the row containing the facility itself(
m+ 1

2
− a
)
×
(
|I|+ 1

2
+ a

)
.

• The rows above the facility up to Rmid

a−1∑
i=0

(
|I|+ 1

2
− a+ 2i

)
.

• The rows above Rmid(
m− 1

2

)
×
(
|I|+ 1

2
− a
)
.

Hence, B gains overall Voronoi region of:(
m+ 1

2
− a
)
×
(
|I|+ 1

2
+ a

)
+

a−1∑
i=0

(
|I|+ 1

2
− a+ 2i

)
+

(
m− 1

2

)
×
(
|I|+ 1

2
− a
)
.

The second part of this equation can be simplified as follows:

|I|+ 1

2
− a+ 2

a−1∑
i=0

i.

And so, the final amount of the Voronoi region is equal to:

m

(
|I|+ 1

2

)
− a2.

The amount of the Voronoi region for the same facility in Rmid is equal to

m

(
|I|+ 1

2

)
.

Therefore, the lemma holds.

Similar calculation for the case when the Voronoi region of a facility is
in more than just one interval as illustrated in Figure 6, confirms the result
of the previous lemmas. It is obvious now that for any n ≥ n1, moving a
facility to another cell in the same interval decreases the Voronoi region for
the facility (except for Rmid). Our goal is to compute a length for the grid,
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Figure 6: Voronoi region in more than one interval

⇒

Figure 7: Transferring a facility from LHI

denoted by nm, in which W wins the game with the winning margin of m in
G(m,nm). Now the question is that if n1 = nm? Actually, there are some
cases in which nm ≤ n1 (for example GV G1(G(7, 29), 3)). As a result and
based on the number of cells which 1

3 of them are owned by B, it is easy to
show that nm can be computed as follows:

nm =


n1 ;

(
m+1
2

)
mod 3 = 0

n1 − (k − 2) ;
(
m+1
2

)
mod 3 = 1

n1 ;
(
m+1
2

)
mod 3 = 2

(14)

This equation along with the previous lemmas, decreases the number of
possible facility movements to two cases which are called valid movements.

• Transferring a facility from LHI to its neighboring interval (IMIN or
IMAX) including the column which contains W ’s facility.

• Transferring a facility from an IMIN interval to a neighboring IMAX
one, including the column containing W ’s facility.

Definition 3. The intersection of Voronoi regions of two facilities, is called
the overlapping of these facilities.
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⇒

Figure 8: Transferring from IMIN to IMAX

The next observation summarizes the possible overlapping amounts of
two facilities.

Observation 1. Figure 9 presents all possible arrangements of two consec-
utive facilities when they have overlapping. The amount of overlapping for
these possible cases in both odd and even intervals is computed.

Lemma 3. Suppose G(m,n) is a grid in which, n ≥ nm. W wins GV G1(G, 2)
with the winning margin of m, if 2k - n. The game will end in a tie, when
2k | n.

Proof. To prove this lemma, we will study different cases of Figure 9. In
these cases, we denote the full intervals by I. To compute the Voronoi region
of B in any of these cases, we first compute the Voronoi region of B’s facilities
one by one and independent from each other (assuming the absence of the
other facilities of B). Then we compute the amount of overlapping for every
two consecutive facilities of B (which are listed in Figure 9). Subtracting the
sum of overlapping amounts form the sum of the Voronoi region of facilities
and comparing it to the results of the simple strategy leads to the proof.
As an example in the case of Figure 9(a), the Voronoi region of the left side

facility of B is m × ( |I|+1
2 ). Furthermore, the Voronoi region of the right

side facility of B independent from the left side facility is the same value.
Hence the total value of the Voronoi region of B is m× |I|. Considering the
relation and the ratio between |I|, |LHI| and |RHI|, B gains values in Eq.
(15) in case of playing according to Formula (7).

m× |I| ; |RHI| = |LHI| = |I|−1
2

m× |I|+ m
2 ; |RHI| = |LHI| = |I|

2

m× |I|+m ; |RHI| = |LHI| = |I|+1
2

(15)

This implies that selecting the simple strategy by B, dominates the case
illustrated in Figure 9(a). Similarly, in Figure 9(b) the Voronoi region for
the left facility is
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(a) Odd :m , Even :m (b) Odd : 11m−7
12

, Even : 11m−7
12

(c) Odd :m−1
2

, Even :m−1
2

(d) Odd :m−1
6

, Even :m−1
6

(e) Odd : 4m−3
6

, Even :m−1
2

(f) Odd :m−1
6

, Even :m−1
6

(g) Odd :m−1
12

, Even :0

Figure 9: Possible overlapping amounts of two facilities.

(
3m− 1

8

)
× |I|+ (m− 1)× |HI|

4
+

3

4
m− 3

4

and for the right side facility is

m×
(
|I|+ 1

2

)
.

By considering |I| to be odd, the total amount of B’s Voronoi region is

m× |I| − |I|
4

+
m

3
− 4

3
.
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(a) Zigzag strategy

(b) Simple strategy

Figure 10: Zigzag strategy vs. simple strategy

Clearly, this value is smaller than

m× |I|+ m

2
.

The proof for the other cases are similar.

Lemma 4. Let G(m,n) be a grid in which n ≥ nm. B loses GV G1(G, 3)
with the minimum loss margin of m if 2k - n.

Proof. The proof for this lemma is very similar to the proof of Lemma 3.
The only difference is that in the game with k = 3 facilities, both of the
valid movements are possible for B. Again, we should investigate all the
possible cases of moving the facilities from Rmid and gain a larger Voronoi
region. The calculations for these cases are similar to the one’s in the lemma
3. These calculations for the possible cases will lead to the proof.

As mentioned, we started to move the facilities by one of the valid move-
ments. Similar calculations indicate that when a movement starts with a
valid one, it can only continue for at most three facility movement. Theorem
3 covers this problem.

Theorem 3. For any odd m, any optional k and any n ≥ nm, W wins
GV G1(G(m,n), k) with winning margin of m if 2k - n.

Proof. It is clear that if B plays according to the simple strategy he loses the
game by a loss margin of m. We are interested in the possibility of win or a

20



smaller loss margin. To achieve these goals, consider the first two facilities
of B. It is obvious that in order to achieve the efficiency of the zigzag
movement of B’s facilities, the Voronoi region for the first movement and
the sum of Voronoi regions for the first and the second movements must
dominate the Voronoi region of these facilities which their positions are
selected based on the simple strategy. To demonstrate this formally, assume
that the Voronoi region of the first movement of B is P ′ and the second one is
Q′. Also suppose that by placing the same facilities in Rmid according to the
simple strategy, B gains P and Q, respectively. It is clear that for a zigzag
movement to be efficient, |P ′|+|Q′| > |P |+|Q|must holds. Considering this,
for any k and m, in a grid with n = nm a zigzag movement must start with
one of the valid movements and only grows if these conditions hold. So, to
show the correctness of the proof, we will first start from the leftmost facility
of B and will proceed to the right side of the grid one interval a step and will
check the possibility of one or both of the valid movements. Now assume
that the first valid movement is possible in the left half interval. If k = 2
or k = 3 , by Lemma 3 and Lemma 4 respectively , we know that B loses
the game with a loss margin of m. Similar reasonings for k > 3 indicates
that moving at most three consecutive facilities from Rmid starting by the
first valid movement, independent of the type of the neighboring intervals
(IMIN or IMAX), is a non efficient action (Figure 4). that is, the amount
of the Voronoi region for the very same facilities placed on Rmid, dominates
the amount of the Voronoi region for the facilities on the zigzag. Likewise,
the second valid movement will become non efficient in at most three moves.
Hence, zigzag movement of just two facilities is not efficient (as for k = 2 in
all cases). Similarly, three movements, in all possible cases is non efficient.
As a result any zigzag movement of more than three facilities will be non
efficient. Therefore, the proof is complete.

Our Computational experiments have confirmed W will not lose the
game for any n0 > mk − k + 1. For n < n0 the winner of the game will
change from W to B and vice versa frequently. However, the winning margin
of W for n0 ≤ n < nm is less that m in most cases. This problem along
with the game on a grid with even width are currently open.

5 Conclusion and Future Works

In this paper, we have studied one round Voronoi game on one and two
dimensional grids. As a result we proposed an optimal winning strategy for
White (the first player) in both grids which guarantee the winning margin
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of m in the G(m,n) where m, the width of the grid, is an odd number. Like
other variations of the Voronoi game problem, several problems arises in
this context. The most interesting problem is probably the game in the grid
with the even width. Two dimensional k -round game which is a challenging
problem in most contexts is an interesting open problem as well.
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